首页 考试资料幻灯片工程技术公务员考试小学教学中学教学大学教学外语资料
高中数学知识点总结(最全版)96


x2

k x
b 2a

k
x2
?

x1
a?0

x

x??

f (k ) ? 0

③x1<k<x2

?
y

af(k)<0

y
a?0
?

f (k ) ? 0 x2 x
a?0

O

k
?

x1

x2

x

x1

O

k

f (k ) ? 0

④k1<x1≤x2<k2

?
a?0

y
? ?

y

f ( k1 ) ? 0 f ( k ) ? 0 2 x1 x2 k2 x
O

x??

b 2a

O k 1

k1
?

x1

x2

k2
?

x

x??

b 2a

f ( k1 ) ? 0 a?0

f (k 2 ) ? 0

⑤有且仅有一个根 x(或 x2) 满足 k1<x(或 x2) <k2 1 1

?

f(k1)f(k2) ? 0, 并同时考虑 f(k1)=0 或 f(k2)=0

第 - 14 - 页 共 102 页

这两种情况是否也符合

y
?

a?0

y
f ( k1 ) ? 0
?

f ( k1 ) ? 0 x1 k2
?

O k 1

x2

x

O

x1 k 1
a?0

x2

k2

?

x

f (k 2 ) ? 0

f (k 2 ) ? 0

⑥k1<x1<k2≤p1<x2<p2 此结论可直接由⑤推出.

?

(5)二次函数 f ( x) ? ax2 ? bx ? c(a ? 0) 在闭区间 [ p, q ] 上的最值 设 f ( x) 在区间 [ p, q ] 上的最大值为 M ,最小值为 m ,令 x0 ? (Ⅰ)当 a ? 0 时(开口向上) ①若 ?

1 ( p ? q) . 2
③若 ?

b ? p ,则 m ? f ( p) 2a
a?0

②若 p ? ?

b b ? q ,则 m ? f ( ? ) 2a 2a

b ? q ,则 m ? f (q ) 2a

yx ? ? b f (q) p
O

2a

a?0

y

x??

f (p) q
x

b 2a

a?0

y

x??

f (q)
O
f (? b ) 2a

f (p) q
x

b 2a

q p
O

f
b ? x0 ,则 M ? f (q) ①若 ? 2a
a?0
b f ((p) ? ) 2a

p

x
b ) 2a

f f (? (q)

yx ? ? b f
O

b ? x0 ,则 M ? f ( p) ②? 2a y b a?0
x??

2a

f (p) x0 ? p (q) q
O

2a

x(q) 0 p ?

q

x

x
b ) 2a

f
(Ⅱ)当 a ? 0 时(开口向下) ①若 ?
b f ((p) ? ) 2a

f f (?

b ? p ,则 M ? f ( p) 2a
a?0

②若 p ? ?

b b ? q ,则 M ? f (? ) 2a 2a

③若 ?

b ? q ,则 M ? f (q) 2a
a?0
f (?

f (?

yb
2a

)

a?0

f (?

yb
2a

)

yb f 2a )

f (p)
O

f q (p)
x
O

(q) q p
x
O

p
b x ? ?(q) 2a

p f

q
x?? b 2a

x

f

b ?(q) 第 - 15 - 页 102 页 x ?共 2a

f (p)

①若 ?

b ? x0 ,则 m ? f (q ) 2a
a?0
f (?

②?

b ? x0 ,则 m ? f ( p) . 2a
a?0
f (?

yb
2a

)

f (p)

yb f 2a )

(q)
x0 ? O p
b x ? ?(q) 2a

q
x

x0 p ?

O

q
x?? b 2a

f (p)

x

f

第三章 函数的应用 一、方程的根与函数的零点 1、 函数零点的概念: 对于函数 y ? f ( x)(x ? D) , 把使 f ( x) ? 0 成立的实数 x 叫做函数 y ? f ( x)(x ? D) 的零点。 2、函数零点的意义:函数 y ? f ( x) 的零点就是方程 f ( x) ? 0 实数根,亦即函数 y ? f ( x) 的图象与 x 轴 交点的横坐标。即: 方程 f ( x) ? 0 有实数根 ? 函数 y ? f ( x) 的图象与 x 轴有交点 ? 函数 y ? f ( x) 有零点. 3、函数零点的求法: 求函数 y ? f ( x) 的零点: 1 (代数法)求方程 f ( x) ? 0 的实数根; ○ 2 (几何法)对于不能用求根公式的方程,可以将它与函数 y ? ○ 性质找出零点. 4、二次函数的零点: 二次函数 y ? ax ? bx ? c(a ? 0) .
2

f ( x) 的图象联系起来,并利用函数的

1)△>0,方程 ax ? bx ? c ? 0 有两不等实根,二次函数的图象与 x 轴有两个交点,二次函数有两个 零点.
2

2)△=0,方程 ax ? bx ? c ? 0 有两相等实根(二重根) ,二次函数的图象与 x 轴有一个交点,二次 函数有一个二重零点或二阶零点.
2

3)△<0,方程 ax ? bx ? c ? 0 无实根,二次函数的图象与 x 轴无交点,二次函数无零点. 高中数学 必修 2 知识点 第一章 空间几何体 1.1 柱、锥、台、球的结构特征
2

(1)棱柱:定义:有两个面互相平行,其余各面都是四边形,且每相邻两个四边形的公共边都互相平行,由这 些面所围成的几何体。 分类:以底面多边形的边数作为分类的标准分为三棱柱、四棱柱、五棱柱等。 表示:用各顶点字母,如五棱柱 ABCDE ? A B C D E 或用对角线的端点字母,如五棱柱 AD 几何特征:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的 截面是与底面全等的多边形。 (2)棱锥
' ' ' ' '
'

第 - 16 - 页 共 102 页

定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的几何体 分类:以底面多边形的边数作为分类的标准分为三棱锥、四棱锥、五棱锥等 表示:用各顶点字母,如五棱锥 P ? A B C D E 几何特征:侧面、对角面都是三角形;平行于底面的截面与底面相似,其相似比等于顶点到截面距离与高的比的 平方。 (3)棱台:定义:用一个平行于棱锥底面的平面去截棱锥,截面和底面之间的部分 分类:以底面多边形的边数作为分类的标准分为三棱态、四棱台、五棱台等
' ' ' ' '

表示:用各顶点字母,如五棱台 P ? A B C D E 几何特征:①上下底面是相似的平行多边形 ②侧面是梯形 ③侧棱交于原棱锥的顶点 (4)圆柱:定义:以矩形的一边所在的直线为轴旋转,其余三边旋转所成的曲面所围成的几何体 几何特征:①底面是全等的圆;②母线与轴平行;③轴与底面圆的半径垂直;④侧面展开图是一个矩形。 (5)圆锥:定义:以直角三角形的一条直角边为旋转轴,旋转一周所成的曲面所围成的几何体 几何特征:①底面是一个圆;②母线交于圆锥的顶点;③侧面展开图是一个扇形。 (6)圆台:定义:用一个平行于圆锥底面的平面去截圆锥,截面和底面之间的部分 几何特征:①上下底面是两个圆;②侧面母线交于原圆锥的顶点;③侧面展开图是一个弓形。 (7)球体:定义:以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的几何体 几何特征:①球的截面是圆;②球面上任意一点到球心的距离等于半径。 1.2 空间几何体的三视图和直观图 1 三视图: 正视图:从前往后 侧视图:从左往右 俯视图:从上往下 2 画三视图的原则: 长对齐、高对齐、宽相等 3 直观图:斜二测画法 4 斜二测画法的步骤: (1).平行于坐标轴的线依然平行于坐标轴; (2).平行于 y 轴的线长度变半,平行于 x,z 轴的线长度不变; (3).画法要写好。 5 用斜二测画法画出长方体的步骤: (1)画轴(2)画底面(3)画侧棱(4)成图
' ' ' ' '

1234567891011121314151617181920212223242526272829

 


 

  【Top

最新搜索

 

最全高中数学选修1-1知识点总结归纳(经典版)_数学_高中教育_教育专区。高中数学 点击免费领取更多资料 www.daigemath.com 高中数学 选修 1-1 知识点总结归纳 (...

最全高中数学选修知识点总结归纳(经典版) - 高中数学 点击免费领取更多资料 www.daigemath.com 最全高中数学 选修知识点总结归纳 (经典版) 第 1 页 高中数学 ...

最全初中数学知识点总结归纳(最新版) - 高中数学 点击免费领取更多资料 www.daigemath.com 初中数学 知识点总结归纳 (最新版) 高中数学 点击免费领取更多资料 ...

最详细的高中物理知识点总结(最全版) - 高中数学 点击免费领取更多资料 www.daigemath.com 高中物理知识点总结 (经典版) 高中数学 点击免费领取更多资料 第一章...

最全高中生物知识点总结归纳(经典版) - 高中数学 点击免费领取更多资料 www.daigemath.com 高中生物知识点总结 (经典版) 高中数学 点击免费领取更多资料 www...

高中数学 必修2 最全知识点梳理(完整版) - 1.1.1 柱、锥、台、球的结构特征知识点梳理 【重点】 提高学生的观察能力;培养学生的空间想象能力和抽象括能力。...

高中数学知识点总结(最全版)(精品) - 数学知识点总结 引言 1.课程内容: 必修课程由 5 个模块组成: 必修 1:集合、函数概念与基本初等函数(指、对、幂函数) ...

高中数学知识点总结(最全版) - 高中数学 必修 1 知识点 第一章 函数概念 (1)函数的概念 ①设 A 、 B 是两个非空的数集,如果按照某种对应法则 f ,对于...

最全版高中文科数学知识点总结 - 最全版高中文科数学知识点总结 必修 1 数学 集合: 1、集合的定义:一般地,某些指定的对象集在一起就成为一个集合,也简称集。...

高中数学必修五知识点整理【经典最全版】_数学_高中教育_教育专区。此为人教版高中数学必修五最全知识点,由金字塔高中部老师整理总结而成 ...